Abstract

The interaction between a general magnetic source and a long type-II superconducting cylinder in the Meissner or mixed state is studied within the London theory. We first study the Meissner state and solve the Maxwell–London equations when the source is a magnetic monopole located at an arbitrary position. Then the field and supercurrent for a more complicated magnetic charge distribution can be obtained by superposition. A magnetic point dipole with arbitrary direction is studied in detail. It turns out that the levitation force on the dipole contains in general an angular as well as a radial component. By integration we obtain the field and supercurrent when the source is a two-dimensional monopole (a magnetically charged long thread along the axial direction), from which the results for a two-dimensional point dipole easily follow. In the latter case the levitation force points in the radial direction regardless of the orientation of the dipole. The case for a current carrying long straight wire parallel to the cylindrical axis is solved separately. The limit of ideal Meissner state is discussed in most cases. The case of mixed state is discussed briefly. It turns out that vortex lines along the axial direction and vortex rings concentric with the cylinder have no effect outside the cylinder and the levitation forces remain the same as in the case of the Meissner state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.