Abstract
A hybrid renewable energy system offers a significant cost and environmental benefits over the conventional sources due to the constant reduction in the capital costs and increase in the efficiency of renewable energy generators. The major challenge is to properly size the hybrid system components for supplying a stable and cost-effective power with lower environmental emissions. This study analyses a photovoltaic-PV and wind-based hybrid system using different storage technologies based on the technical and economic indicators while satisfying the load requirements of a remote community in an Australian state, Western Australia. For optimizing the system configurations, the effects of temporal resolutions, different storage technologies, PV tracking systems, and lifetime of the battery are comprehensively investigated in conjunction with a sensitivity analysis. Results indicate that the PV/Wind-based hybrid system with vanadium redox flow battery has a lower cost of energy-COE (0.229$/kWh) and net present cost-NPC ($558,118) than those of the PV/Wind/Li-ion (COE: 0.323$/kWh; NPC: $787,464) and PV/Wind/Zinc-Bromide (COE: 0.270$/kWh; NPC: $658,326) ones, but comparable with the PV/Wind/Lead acid (COE: 0.231$/kWh; NPC: $564,002). However, the PV/Wind with a pump-hydro storage option offers the lowest COE of 0.177$/kWh and the NPC of $431,818..
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.