Abstract
Highly resistive undoped p-type gallium oxide samples were subjected to cumulative proton irradiation with energies ranging from 25 to 70 keV and doses in the 1.6 × 1014–3.6 × 1014 cm−2 range. Proton irradiation resulted in up to a factor of 2 reduction of minority electron diffusion length in the samples for temperatures between ∼ 300 and 400 K. Electron injection into the samples under test using a scanning electron microscope beam leads to pronounced elongation of diffusion length beyond the pre-irradiation values, thus demonstrating stable (days after injection) recovery of adverse radiation impact on minority carrier transport. The activation energy of 91 meV estimated from the temperature dependent diffusion length vs electron injection duration experiments is likely related to the local potential barrier height for native defects associated with the phenomenon of interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.