Abstract
In recent years, the surge in plastic production has led to pervasive pollution across all environments, earning us the title of inhabiting a “plastic world.” Consequently, this research endeavors to explore alterations in biochemical parameters, liver enzymes, and tissue integrity within the gills, intestines, and liver of black fish subjected to polyvinyl chloride (PVC) microplastics and paraquat herbicide, both individually and in combination. For this purpose, we allocated 90 blackfish specimens into 9 groups consisting of 10 individuals each through random selection. Following a period of 28 days, we carried out an assessment to investigate the toxic effects of PVC and paraquat, both separately and in combination. Subsequently, The results indicate that the number of red blood cells (RBCs, millions/mm3) in all studied groups (Group G: 3.6 ± 0.18; Group H: 3.5 ± 0.17; and Group I: 3.2 ± 0.16) is significanly lower than the control group (Pvalue<0.05). The glucose levels in all studied groups (Group B: 47 ± 5.12; Group C: 48 ± 3.79; Group D: 51 ± 4.14; Group E: 48 ± 5.37; Group F: 53 ± 7.48; Group G: 53 ± 9.24; Group H: 58 ± 10.43; and Group I: 61 ± 8.71) are higher than the control group (46 ± 3.71). The results indicate that the levels of AST enzyme in all studied groups (group B: 30 ± 0.17; group C: 32 ± 1.61; group D: 34 ± 1.92; group E: 33 ± 1.17; group F: 38 ± 2.27; group G: 38 ± 1.71; group H: 43 ± 2.15; and group I: 46 ± 2.33). Groups F, G, H, and I exhibit significantly higher levels of AST enzyme compared to the control group, with a p-value<0.05. Morphological changes observed in erythrocytes include deformation and cell vacuolation. The maximum amount of changes in the morphology of erythrocytes occurs when black fish is exposed to 2 mg/L of PVC and 0.4 mg/L of paraquat (group I). The histological harm caused by the combination of PVC and paraquat is significant. Findings indicate that increasing the concentration of both microplastics and paraquat enhances their toxicity when combined. Consequently, it's imperative to assess the toxic impact of microplastics (MPs) and paraquat individually, as well as in combination, on aquatic organisms to safeguard them from the detrimental effects of these substances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.