Abstract
The effect of microplastics (MPs) retained in waste activated sludge (WAS) on anaerobic digestion (AD) performance has attracted more and more attention. However, their effect on thermophilic AD remains unclear. Here, the influence of polyvinyl chloride (PVC) MPs on methanogenesis and active microbial communities in mesophilic (37 °C) and thermophilic (55 °C) AD was investigated. The results showed that 1, 5, and 10 mg/L PVC MPs significantly promoted the cumulative methane yield in mesophilic AD by 5.62%, 7.36%, and 8.87%, respectively, while PVC MPs reduced that in thermophilic AD by 13.30%, 18.82%, and 19.99%, respectively. Moreover, propionate accumulation was only detected at the end of thermophilic AD with PVC MPs. Microbial community analysis indicated that PVC MPs in mesophilic AD enriched hydrolytic and acidifying bacteria (Candidatus Competibacter, Lentimicrobium, Romboutsia, etc.) together with acetoclastic methanogens (Methanosarcina, Methanosaeta). By contrast, most carbohydrate-hydrolyzing bacteria, propionate-oxidizing bacterium (Pelotomaculum), and Methanosarcina were inhibited by PVC MPs in thermophilic AD. Network analysis further suggested that PVC MPs significantly changed the relationship of key microorganisms in the AD process. A stronger correlation among the above genera occurred in mesophilic AD, which may promote the methanogenic performance. These results suggested that PVC MPs affected mesophilic and thermophilic AD of WAS via changing microbial activities and interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.