Abstract

The presence of perfluoroalkyl acids (PFAAs) in municipal wastewater has highlighted the need to develop PFAA treatment approaches for wastewater effluent and potable reuse applications. Ozone (O3) and biologically active filtration (BAF) were investigated as standalone and combined pretreatment processes to improve the performance of granular activated carbon (GAC) for PFAA removal from wastewater effluent. As individual processes, ozonation at all three investigated doses (0.35, 0.75, 1.0 mg O3/mg DOC) and BAF at both tested empty bed contact times (EBCT; 15 and 20 min) led to significant improvement in PFAA removal by subsequent GAC treatment. With respect to standalone ozonation, the specific O3 dose of 0.75 mg O3/mg DOC was proven to be the optimum operating condition as further increase of the specific ozone dose to 1.0 mg O3/mg DOC did not provide considerable additional improvement. Extending the EBCT during standalone BAF from 15 to 20 minutes significantly improved the efficacy of GAC for the removal of tested PFAAs. Pretreatment with O3-BAF (0.75 mg O3/mg DOC; 20 min EBCT) in tandem outperformed both standalone ozonation and BAF for the removal of PFAA by GAC. Characterization of effluent organic matter (EfOM) by size exclusion chromatography (SEC) and Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR-MS) before and after pretreatments suggest that among multiple co-occurring phenomena, the shift towards smaller and more polar EfOM may have predominantly alleviated pore constriction/blockage without having adverse impact on direct site competition. This observation is supported by SEC and FT-ICR-MS results indicating reduced EfOM molecular size through O3 and BAF pretreatment as well as transition to more hydrophilic byproducts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call