Abstract

In the present study ozonation process was implemented to analyze the effect of ozonation time on the rate of chemical oxygen demand (COD) removal, mineralization and rate of decolorization of azo dyes. Three types of azo dyes i.e. Acid Red 14, Direct Red 28 and Reactive Black 5 were selected. Decolorization and mineralization of samples were conducted in batch scale. The COD and color removal efficiency were found to be increasing at a certain time of ozonation. The results with Acid Red 14, Congo Red and Reactive Black 5 dyes solutions lead to maximum COD reduction of 75%, 67% & 50% respectively. 93%, 92% and 94% color removal were achieved after 25 min of ozonation time of the same dyes which highlighted that ozonation process was found to be more efficient for reactive dye decolorization. Ozonation by-products analyzed by ion chromatography resulted that it partially mineralized with the formation of chloride, fluoride, sulphate, nitrate and oxalate ions. During ozonation process a rapid decrease in pH value indicated the acidic nature of by-products. The effect of buffered dye solutions on the ozonoation process highlighted that the decolorization efficiency decreases in comparison to unbuffered dye solutions. Ozonation led to enhancement of biodegradability ratio (BOD5/COD) and increased electrical conductivity of the dye solutions. Optimum ozonation time required for degradation of dye solutions reflected the evaluation of energy consumption and cost of the treatment after ozonation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.