Abstract

Condition mediums have a potential role in oocyte development. In this study, we evaluated the effects of different mediums on the developmental potential of vitrified immature human oocyte after IVM and parthenogenesis by ionomycin. Immature oocytes were collected from 184 women after vitrification/thawing and maturation, in three types of IVM mediums separately. Finally, 151 IVM MΙΙ oocytes were obtained and randomly divided into six groups and underwent the following intervention. Fresh and vitrified-thawing MΙΙ oocytes were activated after IVM in three conditioned mediums by ionomycin. Mediums included 1) Minimum Essential Medium Alpha (α-MEM) (as control medium), 2) α-MEM supplemented with supernatants of Mesenchyme bone marrow (B.M), 3) α-MEM with ovarian growth factors (O.F). Then, scoring of parthenote embryos was undertaken in accordance with pertinent morphological properties. Moreover, the expression of Bax and Bcl2 were determined in the parthenote embryos. Percentage of the degenerated oocyte, 2-4 cells, 4-8 cells, and 16 cells, was different in the experimental groups. Also, cytoplasmic maturation and blastocyst formation rates were significantly different (p < 0.05) between the control and the other mediums. The highest mRNA expression levels of Bcl2 and Bax genes in parthenotes were observed in the fIVM O.F and vIVM α-MEM mediums, respectively. vIVM, α-MEM and fIVM O.F showed the lowest expression of Bcl2 and Bax genes, respectively. Our findings indicate that the O.F. medium had more potent effects on oocyte growth and cytoplasmic maturation up to the blastocyst stage with the highest expression level of the BCL2 gene and the lowest relative amount of the BAX gene in this medium. The results of the present study have been verified only for parthenogenetically activated embryos, and any positive effect of the environment on the egg/embryo fertilized with sperm requires more extensive studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.