Abstract
BackgroundThe pivotal factors, including neural plasticity, oxidative stress, neuronal inflammation, and apoptosis, play a significant role in the pathogenesis of tinnitus. The balance between Bax/Bcl-2 genes is an important factor in determining the rate of apoptosis. Pgc-1α and Tfam genes are fundamental regulators of mitochondrial biogenesis. Naringenin possesses significant antioxidant, neuroprotective, anti-inflammatory, anti-apoptotic, and antiviral properties, and its compounds are effective on cell signaling pathways. AimsIn light of the aforementioned information, we endeavored to evaluate the impact of naringenin on the expression levels of Bax, Bcl-2, Pgc-1α, and Tfam genes in the hippocampus of male Wistar rats with chronic tinnitus. Material and MethodsTo demonstrate the existence of tinnitus, all rats were instructed to complete an “active avoidance test” utilizing a conditioning box. The expression levels of genes mentioned above were assessed using real-time PCR. ResultsThe sodium salicylate at a dosage of 350 mg/kg showed an upregulation in the expression level of Bax and a downregulation in the expression level of the Bcl-2 gene (p < 0.001). Furthermore, the sodium salicylate displayed significantly higher expression levels of Tfam and Pgc-1α (p < 0.001) genes. The naringenin, at a dose of 100 mg/kg, led to a decrease in Bax gene expression (p < 0.05) and an increase in Bcl-2 gene expression (p < 0.05). On the other hand, naringenin restored the expression level of both Tfam (p < 0.001) and Pgc-1α (p < 0.01) genes. ConclusionsOur research findings demonstrate that sodium salicylate-induced tinnitus leads to enhanced apoptosis and mitochondrial biogenesis within the hippocampus. Additionally, our evidence recommends that naringenin can reduce apoptosis effectively and maintain a balanced mitochondrial state.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have