Abstract

An accurate understanding of the relationship between reservoir construction and the dynamic change of groundwater level in downstream areas is of great significance for rational development and utilization of water resources. At present, the research on the interaction between surface water (SW) and groundwater (GW) mainly focuses on the interaction between river and GW. There are few studies on the impact of the reservoir construction on GW level in downstream loess irrigation area. Rainfall, evaporation and climate temperature have a great impact on W level, but the impact of reservoir construction on the GW level should not be ignored in the utilization of water resources. In this paper, a GW flow model under a natural boundary was established by numerical simulation. Taking Heihe Jinpen Reservoir in Heihe River watershed as the research object, the influence of the construction of a mountain reservoir on the dynamic change of GW level in the downstream loess region is studied. By comparing the GW level under the natural state without reservoir construction and the measured GW level after the reservoir was built, the variation of the GW depth in the loess area of the lower reaches in the Heihe River watershed is obtained. The results show that simulation accuracy of the interaction between SW and GW was reasonable; after the Heihe Jinpen Reservoir construction, the mean GW level decrease was about 6.05 m in the downstream loess irrigation area in Guanzhong Basin. It provides a method for the simulation and prediction of SW–GW conversion laws. This study is also of great significance to explore the change law of the water cycle and improve the utilization rate of water resources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.