Abstract

Using a set of experiments with an eddy-parameterizing ocean model, it is found that the strength of the Atlantic meridional overturning circulation (AMOC) intensifies with the decrease of the density-dependent mesoscale eddy transfer. However, the intensification is weaker than that suggested by simple scaling relationships previously applied. Perturbing the model control sea surface temperature (SST) to mimic its change in response to doubling of CO2, it is shown that the associated ocean heat uptake (OHU) increases and penetrates deeper with the decrease of the mesoscale eddy transfer. It is shown that the OHU correlates with the AMOC strength, and both these quantities are affected by the mesoscale eddy transfer. Passive tracer experiments in the ocean model provide a possible explanation for the finding in coupled-model climate simulations that the ocean heat uptake efficiency (OHUE) increases with the AMOC strength and decreases with the eddy energy generated from the mean state. It is also found that the OHU in the SST-perturbation experiments scales with the net downward advection of heat. The contribution of the AMOC to the downward heat flux is illustrated using a streamfunction in depth–temperature space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.