Abstract
Context. Quasi-periodic oscillations (QPOs) are a common feature of the power spectrums of X-ray binaries. Currently it is not possible to unambiguously differentiate the large number of proposed models to explain these phenomena through existing observations. Aims. We investigate the observable predictions of a simple model that generates flux modulation: a spiral instability rotating in a thin accretion disk. This model is motivated by the accretion ejection instability (AEI) model for low- frequency QPOs (LFQPOs). We are particularly interested in the inclination dependence of the observables that are associated with this model. Methods. We develop a simple analytical model of an accretion disk, which features a spiral instability. The disk is assumed to emit blackbody radiation, which is ray-traced to a distant observer. We compute pulse profiles and power spectra as observed from infinity. Results. We show that the amplitude of the modulation associated with the spiral rotation is a strong function of inclination and frequency. The pulse profile is quasi-sinusoidal only at low inclination (face-on source). As a consequence, a higher-inclination geometry leads to a stronger and more diverse harmonic signature in the power spectrum. Conclusions. We present how the amplitude depends on the inclination when the flux modulation comes from a spiral in the disk. We also include new observables that could potentially differentiate between models, such as the pulse profile and the harmonic content of the power spectra of high-inclination sources that exhibit LFQPOs. These might be important observables to explore with existing and new instruments.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.