Abstract
We compare the theoretical predictions of the transition layer model with some observational features of quasi-periodic oscillations (QPOs) in neutron star X-ray binaries. We found that the correlation between horizontal branch oscillation (HBO) frequencies and kilohertz (kHz) QPO frequencies, the difference between the low-frequency QPOs in atoll sources and HBOs in Z sources, and the correlation between the frequencies of low-frequency QPOs and break frequencies can be well explained by the transition layer model, provided the neutron star mass is around 1.4 M☉ and the angle between magnetosphere equator and accretion disk plane is around 6°. The observed decrease of peak separation between the two kHz QPO frequencies with the increase of the kHz QPO frequencies and the increase of QPO frequencies with the increase of inferred mass accretion rate are also consistent with the theoretical predictions of the transition layer model. In addition, we derive a simple equation that can be adopted to estimate the angle (δ) between magnetosphere equator and accretion disk plane by use of the simultaneously observed QPO frequency data. We estimate this angle, in the range of 4°-8°, for five Z sources and two atoll sources. The nearly constant δ value for each source, derived from the different sets of simultaneously observed QPO frequency data, provides a strong test of the theoretical model. Finally, we suggest that similar transition layer oscillations may be responsible for the observed QPOs in accretion-powered millisecond X-ray pulsars and Galactic black hole candidates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.