Abstract

The drag force and flow-induced noise of underwater vehicles significantly affect their hydrodynamic and stealth performance. This paper investigates the impact of helical grooves on the drag force and flow-induced noise of underwater vehicles through numerical simulations of the flow around cylinders with two types of helical grooves under various subcritical Reynolds numbers. The simulation scheme employs the large-eddy simulation framework combined with the Lighthill acoustic analogy method. The results show that the helical-groove structure can achieve reductions of up to 30% in drag and 5 dB in noise. These helical grooves have a significant effect in terms of suppressing the formation of a Karman vortex street downstream of the cylinder. Under subcritical Reynolds numbers, the drag-reduction effect of the helically grooved cylinder decreases as the number of helical grooves increases, while the noise-reduction effect increases with increasing number of helical grooves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call