Abstract

It is well known that fairing devices are better alternatives than helical strakes due to their low-drag performance while suppressing vortex-induced vibration (VIV). Our objective is to present a systematic numerical study to understand the hydrodynamic performance and physical mechanism of fairing configurations and then propose a new device for suppressing VIV and reducing drag force. In this work, we simplify our investigation by allowing the cylinder-fairing system to oscillate in cross-flow direction without rotation. Firstly, we present a set of simulations of vortex-induced vibration for Short Crab Claw (SCC) fairings [1] with different nondimensional length (Lf/D), where Lf is the length of fairing and D denotes the diameter of cylinder. To establish the relation between the length of fairing and the performance with respect to VIV suppression and drag reduction, we consider the length ratio Lf/D = 1.25, 1.50, 2.00. The underlying VIV suppression mechanism is investigated with the aid of force and amplitude variations, wake flow structures and frequency ratios. Our results show that the SCC fairing with longer length performs better by suppressing the amplitude up to 84% and reduces the drag coefficient by 40%. This finding implies that by offsetting the vortices shed away from the main cylinder, it lowers the influence of vortex interactions, which leads to the suppression of VIV and net reduction in the drag force generation. Based on this mechanism, we propose a new design of fairing, namely the “Hinged C-shaped”, which consists of a thin splitter plate (connected at the base of main cylinder) bifurcating into a C-shaped geometry after a certain distance. Through our numerical study on its hydrodynamic performance, it is shown to be efficient with respect to VIV suppression and drag reduction. To understand the VIV suppression physics, the numerical study is conducted in two-dimension for the cylinder-fairing mounted elastically with mass ratio m* = 2.6 and the damping ξ = 0.001 at low Reynolds number. We further demonstrate the performance of the new fairing device in three-dimension at sub-critical Reynolds number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call