Abstract

In this study, we report the impact of structural 4H-SiC epitaxial defects on the electrical characteristics and blocking capabilities of SiC power devices. The detection and classification of the various crystal defects existing in 4H-SiC epitaxial layers and substrates was carried out with a commercial inspection tool using an optical microscope with a photoluminescence channel (PL). After the fabrication of dedicated test structures, devices that contain a single crystal defect were selected and electrically tested in reverse bias mode. Photon emission microscopy was performed to enable the localization of the leakage current spots within the devices. Thus, a direct correlation of the various crystal defects with the reduced blocking capability mechanism was made. This evaluation helps to set directions and build a strategy towards the reduction of critical defects in order to improve the performance of SiC devices for high power applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.