Abstract
This study analyzes the consequences of first-order chemical reactions, radiation, and viscous dissipation on the unsteady magnetohydrodynamic natural convective flow of a viscous incompressible fluid over a vertically positioned semi-boundless oscillating plate with uniform mass diffusion and temperature. An implicit finite-difference technique is employed to solve a set of dimensionless, coupled, nonlinear partial differential equations. The numerical results for fluid velocity, concentration, and temperature at the plate under different dimensionless parameters are graphically displayed. Due to first-order homogeneous chemical reactions, it has been discovered that the velocity rises at the time of a generative reaction and drops during a destructive reaction. A decline in velocity is observed with an increase in the phase angle, radiation parameter, and chemical reaction parameter. Further, it has been revealed that plate oscillation, radiation, chemical reactions, and the magnetic field significantly influence the flow behavior.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have