Abstract
Cerium oxide is an important strategic resource and a key raw material for many functional materials in high-tech fields. Microwave heating is an important method to prepare cerium oxide. In the study of cerium oxide prepared by microwave heating, the variation of the polarity factor inside the solution during heating was explored. In addition to thermal effects, microwave heating also exerts electromagnetic influences that promote the mixing of the solution. This study presents both physical experiments and numerical simulations of the mixing behavior of cerium chloride solutions under microwave exposure. The results reveal that under the influence of the microwave electromagnetic field, the mixing uniformity of the solution remains consistent and stable across the entire region. and the VMD-SSA-LSTM model was proposed to forecast the mixing uniformity under different process conditions. The results show that the mixing effect of cerium chloride solution under microwave is better than that under conventional heating. The selected forecast model saves time and energy and can accurately forecast the above situation. In addition, the forecast effect is best when the modal number k of VMD decomposition is selected as 3.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have