Abstract

We examine the effect of carrier localization due to random alloy fluctuations on the radiative and Auger recombination rates in InGaN quantum wells as a function of alloy composition, crystal orientation, carrier density, and temperature. Our results show that alloy fluctuations reduce individual transition matrix elements by the separate localization of electrons and holes, but this effect is overcompensated by the additional transitions enabled by translational symmetry breaking and the resulting lack of momentum conservation. Hence, we find that localization increases both radiative and Auger recombination rates, but that Auger recombination rates increase by one order of magnitude more than radiative rates. Furthermore, we demonstrate that localization has an overall detrimental effect on the efficiency-droop and green-gap problems of InGaN light-emitting diodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.