Abstract

This study addresses the impact of bath stability on electroplated copper for through silicon via (TSV) in a controlled manufacturing environment. Microstructure, impurities and other properties of the copper produced were characterized using an array of techniques, including Electron Backscatter Diffraction Analysis (EBSD), Focused Ion Beam – Secondary Electron Microscope (FIB-SEM) and Time of Flight - Secondary Ion Mass Spectrometry (ToF-SIMS). Chemical analyses of the plating baths throughout their lives indicates that the process can be controlled. Overall, a manufacturing process was demonstrated that can create high quality TSV Cu fill interconnects for 3D IC over the life of the bath. The process has enabled further development work at State University of New York Polytechnic Institute (SUNY Poly) for downstream processes such as chemical mechanical planarization (CMP) and Cu-Cu bonding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call