Abstract

Fin width scaling is required to improve FinFET electrostatics for future technology nodes. This paper studies the benefits, trade-offs and limitations of aggressive fin width (W) scaling on logic and SRAM device characteristics. TCAD analysis is used to understand the impact of gate length (Lg)scaling along with fin width scaling to optimize AC performance. In this paper, W was scaled from 8nm to 1.6nm. It was found that there is a critical fin width (Wc)at ∼4nm. In the W>Wc region, due to better electrostatics from narrower fin, drain-induced barrier lowering (DIBL), DC performance and SRAM Vt mismatch (Vtmm) were improved. As W was scaled down further to W c ∼ 4nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call