Abstract

Photomultiplication and excess noise measurements have been undertaken on two 4H-SiC avalanche photodiodes (APDs) using 244-nm light and 325-nm light. The structures are APDs with separate absorption and multiplication regions having multiplication regions of 2.74 and 0.58 μm , respectively. Pure injection conditions in the thicker device permit the measurement of pure-hole-initiated photomultiplication and an excess noise factor. Ionization coefficients for both carrier types have been extracted from these data using a local model. The use of the excess noise factor to infer the value of the less readily ionizing coefficient α from pure hole injection measurements is more robust than direct extraction from mixed injection measurements. This is because mixed injection introduces uncertainty in the generation profile. We report a significant reduction of the electron ionization coefficient α at low fields. The more readily ionizing hole coefficient β remains very similar to prior work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.