Abstract

Electron injection avalanche photodiodes in SWIR to LWIR HgCdTe show gain and excess noise properties indicative of a single ionizing carrier gain process. The result is an electron avalanche photodiode (EAPD) with ideal APD characteristics including near noiseless gain. This paper reports results obtained on long-wave, mid-wave, and short wave cutoff infrared HgCdTe EAPDs that utilize a cylindrical p-around-n, front side illuminated, n+/n-/p geometry that favors electron injection into the gain region. These devices are characterized by a uniform, exponential, gain voltage characteristic that is consistent with a hole-to-electron ionization coefficient ratio, k, of zero. Gains of greater than 1000 have been measured in MWIR EAPDS without any sign of avalanche breakdown. Excess noise measurements on MWIR and SWIR EAPDs show a gain independent excess noise factor at high gains that has a limiting value less than 2. At 77 K, 4.3 μm cutoff devices show excess noise factors of close to unity out to gains of 1000. The excess noise factor at room temperature on SWIR EAPDs, while still consistent with the k = 0 operation, approaches a gain independent limiting value of just under 2. The k = 0 operation is explained by the band structure of the HgCdTe. Monte Carlo modeling based on the band structure and scattering models for HgCdTe predict the measured gain and excess noise behavior. A noise equivalent input of 7.5 photons at a 10 ns pulsed signal gain of 964, measured on an MWIR APD at 77 K, provides an indication of the capability of the HgCdTe EAPD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.