Abstract

Imogolite is a fascinating inorganic nanotube that is found in nature or synthesized in a laboratory. The synthesis process is carried out in liquid media, and leads to the formation of almost monodisperse diameter nanotubes. Here we investigate, employing classical molecular dynamics simulations, the interaction of water and imogolite for nanotubes of several radii. We established that water penetrates the pores of N = 9 and larger nanotubes, and adopts a coaxial arrangement in it. Also, while water molecules can diffuse along the center of the nanotube, the molecules next to the inner imogolite walls have very low mobility. At the outer nanotube wall, an increase of water density is observed, this effect extends up to 1 nm, beyond which water properties are bulk-like. Both phenomena are affected by the imogolite curvature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.