Abstract
Superhydrophobic surfaces have demonstrated significant potential in various fields. Nonetheless, creating durable superhydrophobic surfaces with practical application value remains a major challenge. This study utilizes biomimicry to prepare a series of composites similar to shark skin, which possesses hydrophobic and wear-resistant properties. A dual-coating strategy was developed to create a durable and wear-resistant superhydrophobic surface. This article introduces a novel approach by incorporating chemically modified sepiolite and graphite nanoparticles in a layer-by-layer composite for enhancing wear resistance in epoxy resin coatings. Epoxy resin (EP) was used as the matrix material, graphite nanoparticles (GNP) were incorporated for the wear-resistant layer, and modified superhydrophobic Sepiolite (osSep) particles were utilized for the superhydrophobic layer. Both of these layers could form hydrogen bonds with epoxy resin, leading to a functional coating that offers wear resistance, superhydrophobicity, chemical stability, and self-cleaning properties. This article applies EP@GNP@osSep composites to glass, wood, and stainless steel mesh, imparting excellent superhydrophobic properties, wear resistance, self-cleaning abilities, and anti-staining properties. The superhydrophobic coating prepared in this manuscript can meet the requirements of robustness and superhydrophobicity for various materials, with promising market potential.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have