Abstract

This study used antisera directed against glutamic acid decarboxylase (GAD), the biosynthetic enzyme for gamma-aminobutyric acid (GABA), to examine the light- and electron-microscopic distribution of presumed GABA-ergic synapses in the medullary homologue of the cat spinal dorsal horn, the trigeminal nucleus caudalis. At the light-microscopic level, immunoreactive terminals were concentrated in the superficial dorsal horn, laminae I and II. Colchicine was generally ineffective in revealing the distribution of cell bodies. However, in two successful cases, the majority of labeled cells were found in the magnocellular layer, ventral to the substantia gelatinosa, a region that had a lower density of immunoreactive terminals. Other labeled neurons were scattered in laminae I and II. A variety of synaptic arrangements were found at the electron-microscopic level. These derived from two types of labeled terminals. One contained both small round vesicles and large dense-cored vesicles. The second contained small round and pleomorphic vesicles. Some immunoreactive GAD terminals contained a few flat vesicles. Labeled terminals predominantly formed axodendritic synapses, via symmetrical contacts. Several axoaxonic arrangements were also observed. In most cases, the GAD terminal (which did not contain dense-cored vesicles) was presynaptic to another vesicle-containing profile, including the scalloped central terminal thought to derive from primary afferents. Another population of labeled GAD terminals was found postsynaptic to unlabeled vesicle-containing profiles, including central terminals. These data indicate that inhibitory GABA-ergic controls in the trigeminal nucleus caudalis involve both presynaptic and postsynaptic mechanisms and are probably mediated via direct contacts onto ascending projection neurons, as well as via synaptic contacts onto nociceptive primary afferent fibers. The transmission of nociceptive messages by neurons of the spinal cord dorsal horn and trigeminal nucleus caudalis is subject to a variety of segmental and supraspinal controls. Pharmacological and electrophysiological studies have implicated the biogenic amines serotonin and norepinephrine, and the endogenous opioid peptides enkephalin and dynorphin, in those controls (Basbaum and Fields, 1978, 1984; Basbaum et al., 1983; Basbaum, 1985).(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call