Abstract
Aim of the study Sensory gating is a human higher cognitive function that serves to suppress excessive sensory information and prevent brain overactivity. To elucidate this function, a paired-pulse stimulation paradigm has been used while recording electroencephalography (EEG), and evaluated as an amplitude ratio of responses to a second stimulus (S2) over responses to the first stimulus (S1). The present study investigated the effects of the inter-stimulus interval (ISI) and inter-trial interval (ITI) on somatosensory gating using somatosensory-evoked potentials (SEPs). Methods In Experiment 1, ISI was set at five conditions: 200, 400, 600, 800, and 1000 ms. In Experiment 2, ITI was set at four conditions: 1, 2, 4, and 8 s. Results ISI affected the S2/S1 amplitude ratios of P22 and N27 at C3’ and N30 at Fz, and these S2/S1 amplitude ratios decreased the most under the 200 and 400-ms conditions. ITI affected the S2/S1 amplitude ratios of P22, N27, and N60 at C3', and especially, the somatosensory gating did not work under the 1-s condition. These results suggest that not all SEP components are modulated in the same manner with changing ISI and ITI. The effects of ISI and ITI independently affected the somatosensory gating. Conclusions Based on our findings, preferable parameters are 200-400 ms for ISI and 4 s or longer for ITI to evaluate the functional mechanisms on somatosensory gating in SEPs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have