Abstract
IntroductionPregnant women are more susceptible to malaria due to a combination of physiological and immunological changes. The infection may even affect the growth and survival of the foetus, which mainly occur when parasite enters the placenta. The sequestration of infected erythrocytes may trigger the host response, leading to placental inflammation and altered development, affecting the structure and nutrient transport of placenta. These factors collectively impair placental functions and affect foetal growth. MethodsPregnant women with peripheral parasitaemia for P. falciparum and P. vivax (20 each) were included in the present study, along with 15 age-matched uninfected healthy pregnant women. Placentae were analysed for the presence of local parasitaemia along with pathological lesions caused due to the parasite. Immunohistochemical staining for CD20, CD45 and CD68 cells was performed for examining the specific leucocytes in the intervillous space of the placenta. ResultsOf the 20 individuals with P. falciparum, only seven placentae showed parasitaemia, whereas individuals with P. vivax showed no placental infection. The pathological changes observed in the P. falciparum-infected placenta include syncytial knotting, excess fibrinoid deposition, syncytiotrophoblast necrosis, syncytial rupture, thickening of trophoblast basement membrane and increased collagen deposition. Immunohistochemical staining showed a significant increase in B cells (CD20), leucocytes (CD45) and monocytes and macrophages (CD68) in the P. falciparum-infected placenta (p < 0.0001). DiscussionThe result implies that P. falciparum is responsible for pathological alterations in placenta, affecting the nutrient transport across placenta and foetal growth. The immune cells also migrate to the placenta and accumulate in the intervillous space to show humoral and cell-mediated immunity against the parasite.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have