Abstract
Slow pyrolysis was carried out in biosolids under three different temperatures (400, 500 and 600 °C) and two different carrier gases (CO2 and N2) on a fluidized bed reactor. The total concentration, chemical fractionation, and plant availability of the heavy metals in biochar were assessed by standard methods. The total concentration of Fe, Zn, Cu, Mn, Cr, Ni and Pb increased with the conversion of biosolids to biochar and with increasing pyrolysis temperature. The community’s Bureau of Reference (BCR) sequential extraction identified the migration of metals from toxic and bioavailable to potentially stable available or non-available forms at higher pyrolysis temperatures. Diethylenetriamine penta-acetic acid (DTPA)-extractable metals (Cu, Zn, Cd, Cu, Fe and Pb) were significantly lower in biochar compared to biosolids. By replacing N2 with CO2, the total metal concentration of heavy metals was significantly different for Mn, Ni, Cd, Pb and As. There were larger amounts of metals in the residual and oxidizable fractions compared to when N2 was used as a carrier gas. Consequently, the biochar produced at higher temperatures (500 and 600 °C) in the N2 environment exhibited lower potential ecological risks than in CO2 environments (69.94 and 52.16, respectively, compared to values from 75.95 to 151.38 for biochars prepared in N2). Overall, the results suggest that the higher temperature biochar can support obtaining environmentally safe biochar and can be effective in attenuating the ecological risks of biosolids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.