Abstract

Forests play a crucial role in climate change mitigation by acting as a carbon sink. Understanding the influence of soil properties on carbon stocks in forests is essential for developing effective forest management strategies. The aim of the study was to assess the impact of soil texture on carbon stocks in the biomass of deciduous and coniferous tree stands of a forest-steppe ecotone. Soil samples were collected from 55 soil pits, and forest inventory data were obtained from eight permanent sample plots. The results showed that the distribution of mechanical particles in soils, particularly the stocks of silt and clay, significantly influenced the accumulation of carbon in tree stands. The stock of silt and clay was shown to increase with an increase in the diversity of tree species in forests and carbon stocks in forest stands. While soil organic carbon stocks did not exhibit a clear relationship with tree stand carbon stocks, a strong positive correlation (r = 0.802, p < 0.05) was found between the stocks of fine particles in the 2 m root-inhabited soil layer and the carbon stocks in tree biomass. The study provides a classification of forest types based on soil texture, which can facilitate differentiated forest management strategies for enhancing the carbon sequestration potential of forest ecosystems in the forest-steppe zone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.