Abstract
Imaging of objects through complex environment is important in several applications, including imaging of hidden objects in obscuring media such as atmospheric and ocean turbulence, rough ocean surfaces, rain, fog, snow, and biological tissues. These media are often randomly varying in space and time, and statistical treatments are necessary to obtain images with useful spatial and temporal resolutions. In recent years, there has been increasing interest in using signal processing and correlation techniques to improve resolutions and to distinguish images from clutter. This paper presents several imaging techniques for objects in the presence of random media. Time-reversal MUSIC (multiple signal classification) imaging has excellent resolution when multiple scattering is small or moderate. Modified beamformer imaging has moderately high resolution even at large multiple scattering. We also include time reversal (TR) and synthetic aperture radar (SAR) imaging for comparison. The technique involves stochastic Green's function and mutual coherence function (MCF), eigenvectors of time-reversal matrix and pseudo spectrum. Numerical examples are given to show the effectiveness of these imaging techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.