Abstract
We report on the experimental measurement of the DC and microwave magnetic field distributions inside a recently-developed compact magnetron-type microwave cavity, mounted inside the physics package of a high-performance vapor-cell atomic frequency standard. Images of the microwave field distribution with sub-100 $\mu$m lateral spatial resolution are obtained by pulsed optical-microwave Rabi measurements, using the Rb atoms inside the cell as field probes and detecting with a CCD camera. Asymmetries observed in the microwave field images can be attributed to the precise practical realization of the cavity and the Rb vapor cell. Similar spatially-resolved images of the DC magnetic field distribution are obtained by Ramsey-type measurements. The T2 relaxation time in the Rb vapor cell is found to be position dependent, and correlates with the gradient of the DC magnetic field. The presented method is highly useful for experimental in-situ characterization of DC magnetic fields and resonant microwave structures, for atomic clocks or other atom-based sensors and instrumentation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have