Abstract

Abstract We described ferromagnetic film and bilayer films composed of two ferromagnetic layers coupled through antiferromagnetic interfacial interaction by classical Heisenberg model and simulated their magnetization state, magnetic permeability, and Faraday effect at zero and finite temperature by using the Landau–Lifshitz–Gilbert (LLG) equation. The results indicate that in a microwave field with positive circular polarization, the ferromagnetic film has one resonance peak while the bilayer film has two resonance peaks. However, the resonance peak disappears in ferromagnetic film, and only one resonance peak emerges in bilayer film in the negative circularly polarized microwave field. When the microwave field’s frequency exceeds the film’s resonance frequency, the Faraday rotation angle of the ferromagnetic film is the greatest, and it decreases when the thickness of the two halves of the bilayer is reduced. When the microwave field’s frequency remains constant, the Faraday rotation angle fluctuates with temperature in the same manner as spontaneous magnetization does. When a DC magnetic field is applied in the direction of the anisotropic axis of the film, the Faraday rotation angle varies with the DC magnetic field and shows a similar shape of the hysteresis loop.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.