Abstract

Image-based 3D reconstruction enables laparoscopic applications as image-guided navigation and (autonomous) robot-assisted interventions, which require a high accuracy. The review’s purpose is to present the accuracy of different techniques to label the most promising. A systematic literature search with PubMed and google scholar from 2015 to 2023 was applied by following the framework of “Review articles: purpose, process, and structure”. Articles were considered when presenting a quantitative evaluation (root mean squared error and mean absolute error) of the reconstruction error (Euclidean distance between real and reconstructed surface). The search provides 995 articles, which were reduced to 48 articles after applying exclusion criteria. From these, a reconstruction error data set could be generated for the techniques of stereo vision, Shape-from-Motion, Simultaneous Localization and Mapping, deep-learning, and structured light. The reconstruction error varies from below one millimeter to higher than ten millimeters—with deep-learning and Simultaneous Localization and Mapping delivering the best results under intraoperative conditions. The high variance emerges from different experimental conditions. In conclusion, submillimeter accuracy is challenging, but promising image-based 3D reconstruction techniques could be identified. For future research, we recommend computing the reconstruction error for comparison purposes and use ex/in vivo organs as reference objects for realistic experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call