Abstract

In 3D optical metrology, single-shot deep learning-based structured light profilometry (SS-DL-SLP) has gained attention because of its measurement speed, simplicity of optical setup, and robustness to noise and motion artefacts. However, gathering a sufficiently large training dataset for these techniques remains challenging because of practical limitations. This paper presents a comprehensive DL-SLP dataset of over 10,000 physical data couples. The dataset was constructed by 3D-printing a calibration target featuring randomly varying surface profiles and storing the height profiles and the corresponding deformed fringe patterns. Our dataset aims to serve as a benchmark for evaluating and comparing different models and network architectures in DL-SLP. We performed an analysis of several established neural networks, demonstrating high accuracy in obtaining full-field height information from previously unseen fringe patterns. In addition, the network was validated on unique objects to test the overall robustness of the trained model. To facilitate further research and promote reproducibility, all code and the dataset are made publicly available. This dataset will enable researchers to explore, develop, and benchmark novel DL-based approaches for SS-DL-SLP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.