Abstract

Nuclear fuel cycle studies have provided a wealth of information on the potential impacts of advanced recycling systems. Deciding on fuel cycle implementation pathways, however, requires synthesizing volumes of data and navigating trade-offs between fuel cycle options. This research presents a framework intended to aid fuel cycle decision makers by focusing on the cost reduction/waste mitigation trade-off as a lens for choosing a near-term strategy. The framework consists of a fuel cycle simulation coupled to a decision tree model that maps evolution scenarios. System scenarios are constructed by considering the technological options for fuel cycle evolution and key uncertainties expected to affect the desirability of those options. For this study, the once-through fuel cycle is compared to a self-sustaining fast reactor (FR) fuel cycle. Scenarios are compared using a value function that incorporates cost and waste metrics. The results indicate that uranium costs and the attainable level of reprocessing efficiency may not significantly impact the suite of desirable decisions. On the other hand, the pattern and timing of nuclear builds as well as the extent to which FRs provide true waste mitigation more significantly impact the attractiveness of closing the fuel cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.