Abstract
In this work, a novel and ultra-robust single image dehazing method called IDRLP is proposed. It is observed that when an image is divided into n regions, with each region having a similar scene depth, the brightness of both the hazy image and its haze-free correspondence are positively related with the scene depth. Based on this observation, this work determines that the hazy input and its haze-free correspondence exhibit a quasi-linear relationship after performing this region segmentation, which is named as region line prior (RLP). By combining RLP and the atmospheric scattering model (ASM), a recovery formula (RF) can be easily obtained with only two unknown parameters, i.e., the slope of the linear function and the atmospheric light. A 2D joint optimization function considering two constraints is then designed to seek the solution of RF. Unlike other comparable works, this "joint optimization" strategy makes efficient use of the information across the entire image, leading to more accurate results with ultra-high robustness. Finally, a guided filter is introduced in RF to eliminate the adverse interference caused by the region segmentation. The proposed RLP and IDRLP are evaluated from various perspectives and compared with related state-of-the-art techniques. Extensive analysis verifies the superiority of IDRLP over state-of-the-art image dehazing techniques in terms of both the recovery quality and efficiency. A software release is available at https://sites.google.com/site/renwenqi888/.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.