Abstract
Image dehazing is crucial for improving the advanced applications on remote sensing (RS) images. However, collecting paired RS images to train the deep neural networks (DNNs) is scarcely available, and the synthetic datasets may suffer from domain-shift issues. In this paper, we propose a zero-shot RS image dehazing method based on a re-degradation haze imaging model, which directly restores the haze-free image from a single hazy image. Based on layer disentanglement, we design a dehazing framework consisting of three joint sub-modules to disentangle the hazy input image into three components: the atmospheric light, the transmission map, and the recovered haze-free image. We then generate a re-degraded hazy image by mixing up the hazy input image and the recovered haze-free image. By the proposed re-degradation haze imaging model, we theoretically demonstrate that the hazy input and the re-degraded hazy image follow a similar haze imaging model. This finding helps us to train the dehazing network in a zero-shot manner. The dehazing network is optimized to generate outputs that satisfy the relationship between the hazy input image and the re-degraded hazy image in the re-degradation haze imaging model. Therefore, given a hazy RS image, the dehazing network directly infers the haze-free image by minimizing a specific loss function. Using uniform hazy datasets, non-uniform hazy datasets, and real-world hazy images, we conducted comprehensive experiments to show that our method outperforms many state-of-the-art (SOTA) methods in processing uniform or slight/moderate non-uniform RS hazy images. In addition, evaluation on a high-level vision task (RS image road extraction) further demonstrates the effectiveness and promising performance of the proposed zero-shot dehazing method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.