Abstract

Ecological risk assessment of contaminated sediment has become a fundamental component of water quality management programs, supporting decision-making for management actions or prompting additional investigations. In this study, we proposed a machine learning (ML)-based approach to assess the ecological risk of contaminated sediment as an alternative to existing index-based methods and costly toxicity testing. The performance of three widely used index-based methods (the pollution load index, potential ecological risk index, and mean probable effect concentration) and three ML algorithms (random forest, support vector machine, and extreme gradient boosting [XGB]) were compared in their prediction of sediment toxicity using 327 nationwide data sets from Korea consisting of 14 sediment quality parameters and sediment toxicity testing data. We also compared the performances of classifiers and regressors in predicting the toxicity for each of RF, SVM, and XGB algorithms. For all algorithms, the classifiers poorly classified toxic and non-toxic samples due to limited information on the sediment composition and the small training dataset. The regressors with a given classification threshold provided better classification, with the XGB regressor outperforming the other models in the classification. A permutation feature importance analysis revealed that Cr, Cu, Pb, and Zn were major contributors to toxicity prediction. The ML-based approach has the potential to be even more useful in the future with the expected increase in available sediment data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.