Abstract
The bromodomain (BRD) represents a highly conserved structural module that provides BRD proteins with fundamental functionality in modulating protein-protein interactions involved in diverse biological processes such as chromatin-mediated gene transcription, DNA recombination, replication and repair. Consequently, dysregulation of BRD proteins has been implicated in the pathogenesis of numerous human diseases. In recent years, considerable scientific endeavors have focused on unraveling the molecular mechanisms underlying BRDs and developing inhibitors that target these domains. While these inhibitors compete for binding with the acetylated lysine binding site of BRDs, achieving inhibition of BRD proteins via competitive pocket binding has proven challenging due to the conserved nature of these pockets. To address this limitation, the present study employed dynamic simulations for a comprehensive analysis, leading to the identification of a non-conserved pocket in CECR2 for achieving BRD family inhibition through allosteric modulation. Subsequently, the compound BAY 11-7085 was proven capable of covalently binding to C494 of this pocket after covalent docking and biological verification in vitro. The allosteric inhibition strategy of CECR2 was further verified by the structurally optimized compound LC-CE-7, which is an allosteric covalent CECR2 inhibitor with anti-cancer effects in MDA-MB-231 cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have