Abstract

Although its uninterrupted supply is essential for everyday life, the electricity occasionally experiences disruptions and outages. The work presented in the current paper aims to initiate the research to design a strategy based on advanced approaches of algebraic topology to prevent such malfunctions in a power grid network. Simplicial complexes are constructed to identify higher-order structures embedded in a network and, alongside a new algorithm for identifying delegates of the simplicial complex, are intended to pinpoint each element of the power grid network to its natural layer. Results of this methodology for analysis of a power grid network can single out its elements that are at risk to cause cascade problems which can result in unintentional islanding and blackouts. Further development of the outcomes of research can find implementation in the algorithms of the energy informatics research applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call