Abstract

Since 2001, cardiovascular disease (CVD) has had the second-highest mortality rate, about 15,700 people per year, in Taiwan. It has thus imposed a substantial burden on medical resources. This study was triggered by the following three factors. First, the CVD problem reflects an urgent issue. A high priority has been placed on long-term therapy and prevention to reduce the wastage of medical resources, particularly in developed countries. Second, from the perspective of preventive medicine, popular data-mining methods have been well learned and studied, with excellent performance in medical fields. Thus, identification of the risk factors of CVD using these popular techniques is a prime concern. Third, the Framingham risk score is a core indicator that can be used to establish an effective prediction model to accurately diagnose CVD. Thus, this study proposes an integrated predictive model to organize five notable classifiers: the rough set (RS), decision tree (DT), random forest (RF), multilayer perceptron (MLP), and support vector machine (SVM), with a novel use of the Framingham risk score for attribute selection (i.e., F-attributes first identified in this study) to determine the key features for identifying CVD. Verification experiments were conducted with three evaluation criteria—accuracy, sensitivity, and specificity—based on 1190 instances of a CVD dataset available from a Taiwan teaching hospital and 2019 examples from a public Framingham dataset. Given the empirical results, the SVM showed the best performance in terms of accuracy (99.67%), sensitivity (99.93%), and specificity (99.71%) in all F-attributes in the CVD dataset compared to the other listed classifiers. The RS showed the highest performance in terms of accuracy (85.11%), sensitivity (86.06%), and specificity (85.19%) in most of the F-attributes in the Framingham dataset. The above study results support novel evidence that no classifier or model is suitable for all practical datasets of medical applications. Thus, identifying an appropriate classifier to address specific medical data is important. Significantly, this study is novel in its calculation and identification of the use of key Framingham risk attributes integrated with the DT technique to produce entropy-based decision rules of knowledge sets, which has not been undertaken in previous research. This study conclusively yielded meaningful entropy-based knowledgeable rules in tree structures and contributed to the differentiation of classifiers from the two datasets with three useful research findings and three helpful management implications for subsequent medical research. In particular, these rules provide reasonable solutions to simplify processes of preventive medicine by standardizing the formats and codes used in medical data to address CVD problems. The specificity of these rules is thus significant compared to those of past research.

Highlights

  • This section explores the research background and problem in the relevant medical domains, the research gaps and motivations, and the study goals and research objectives.1.1

  • This study conclusively yielded meaningful entropy-based knowledgeable rules in tree structures and contributed to the differentiation of classifiers from the two datasets with three useful research findings and three helpful management implications for subsequent medical research. These rules provide reasonable solutions to simplify processes of preventive medicine by standardizing the formats and codes used in medical data to address cardiovascular disease (CVD) problems

  • This study proposes a hybrid method to integrate and model Framingham risk attributes and five novel classification techniques—rough set theory (RST), decision tree (DT), random forest (RF), multilayer perceptron (MLP), and support vector machine (SVM)—for the identification of key attributes that influence CVD and to highlight preventive practices in healthcare services

Read more

Summary

Introduction

This section explores the research background and problem in the relevant medical domains, the research gaps and motivations, and the study goals and research objectives.1.1. This section explores the research background and problem in the relevant medical domains, the research gaps and motivations, and the study goals and research objectives. Cardiovascular disease (CVD) is one of the main causes of death [1] in most countries and likely results in related problems in the blood vessels or the heart, such as cerebrovascular disease (i.e., stroke), congenital heart disease, coronary heart disease (CHD) [2], heart failure, peripheral artery disease, raised blood pressure (i.e., hypertension), and rheumatic heart disease. CVD has been a key cause of death by a serious illness in recent years [1,3]. The main risk factors of CVD include an unhealthy diet, harmful use of alcohol and tobacco, and physical inactivity.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call