Abstract

The speed of muscle contraction is related to body size; muscles in larger species contract at slower rates. Since contraction speed is a property of the myosin isoform expressed in a muscle, we investigated how sequence changes in a range of muscle myosin II isoforms enable this slower rate of muscle contraction. We considered 798 sequences from 13 mammalian myosin II isoforms to identify any adaptation to increasing body mass. We identified a correlation between body mass and sequence divergence for the motor domain of the 4 major adult myosin II isoforms (β/Type I, IIa, IIb, and IIx), suggesting that these isoforms have adapted to increasing body mass. In contrast, the non-muscle and developmental isoforms show no correlation of sequence divergence with body mass. Analysis of the motor domain sequence of β-myosin (predominant myosin in Type I/slow and cardiac muscle) from 67 mammals from 2 distinct clades identifies 16 sites, out of 800, associated with body mass (padj < 0.05) but not with the clade (padj > 0.05). Both clades change the same small set of amino acids, in the same order from small to large mammals, suggesting a limited number of ways in which contraction velocity can be successfully manipulated. To test this relationship, the 9 sites that differ between human and rat were mutated in the human β-myosin to match the rat sequence. Biochemical analysis revealed that the rat–human β-myosin chimera functioned like the native rat myosin with a 2-fold increase in both motility and in the rate of ADP release from the actin–myosin crossbridge (the step that limits contraction velocity). Thus, these sequence changes indicate adaptation of β-myosin as species mass increased to enable a reduced contraction velocity and heart rate.

Highlights

  • Proteins can adapt over time, tuning their function to the specific needs of the organisms in which they are expressed

  • We have examined 798 mammalian myosin II sequences, from 13 myosin II isoforms and find that the myosin isoforms found in adult sarcomeric muscle (Type II fast muscle isoforms IIa, IIb, and IIx and β; see Table 1 for definition of isoforms) have a much higher variation in sequence than the non-muscle myosins.Pleasenoteth This is consistent with an adaptation of contraction velocity to body mass occurring only in the adult muscle myosins and not in the non-muscle cellular myosin which are unaffected by overall species size

  • To consider how the motor domain of myosin II isoforms may have adapted to increasing body mass, we investigated whether there was a correlation between sequence divergence and body mass

Read more

Summary

Introduction

Proteins can adapt over time, tuning their function to the specific needs of the organisms in which they are expressed. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call