Abstract
IntroductionEsophageal cancer (EC) is an aggressive cancer type that is increasing at a high rate in the US and worldwide. Extensive sequencing of EC specimens has shown that there are no consistent driver mutations that can impact treatment strategies. The goal of this study was to identify activated tyrosine kinase receptors (TKRs) in EC samples as potential targets in the treatment of EC.MethodsActivated tyrosine kinase receptors were detected using a dot-blot array for human TK receptors. Human esophageal cancer cell lines were transplanted into immunocompromised mice, and tumor xenografts were subjected to tyrosine kinase inhibitors based on the dot-blot array data.ResultsUsing the OE33 esophageal cancer cell line, we identified activated EGF receptor (EGFR), as well as ErbB2 and ErbB3. Treatment of this cell line with erlotinib, a specific inhibitor of EGFR, did not impact the growth of this tumor cell line. Treating the OE33 cell line with afatinib, a pan-EGFR family inhibitor resulted in the growth inhibition of OE33, indicating that the ErbB2 and ErbB3 receptors were contributing to tumor cell proliferation. Afatinib treatment of mice growing OE33 tumors inhibited growth of the OE33 tumor cells.DiscussionActivated tyrosine kinase receptors were readily detected in both cancer cell lines and human esophageal cancer samples. By identifying the activated receptors and then using the appropriate tyrosine kinase inhibitors, we can block tumor growth in vitro and in animal xenografts. We propose that identifying and targeting activated TKRs can be used as a personalized EC tumor treatment strategy.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have