Abstract
A methodology has been proposed to estimate non-proportional viscous damping matrix of beams from measured complex eigendata using finite element model updating technique. Representation of damping through a proportional damping matrix ignoring the complexity of eigenvectors may not be appropriate when external damping devices are employed. The current literature of determination of non-proportional damping matrix demands measurement of a large number of complex modes which is extremely difficult in practice. A gradient based finite element model updating algorithm implementing inverse eigensensitivity method has been presented through a series of numerically simulated cantilever beams. The method can accurately predict the non-proportional damping matrix even if the measured eigenvectors are polluted with random noise. The novelty of the current method is that it can sustain a high level of modal and coordinate sparsity in measurement. The method assumes prior determination or updating of the mass and stiffness matrices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have