Abstract

The aim of this paper is to evaluate the effects of uncertain-but-bounded parameters on the complex eigenvalues of the non-proportional damping structures. By combining the interval mathematics and the finite element analysis, the mass matrix, the damping matrix and the stiffness matrix were represented as the interval matrices. Firstly, with the help of the optimization theory, we presented an exact solution—the vertex solution theorem, for determining the exact upper bounds or maximum values and exact lower bounds or minimum values of complex eigenvalues of structures, where the extreme values are reached on the boundary of the interval mass, damping and stiffness matrices. Then, an interval perturbation method was proposed, which needs less computational efforts. A numerical example of a seven degree-of-freedom spring-damping-mass system was used to illustrate the computational aspects of the presented vertex solution theorem and the interval perturbation method in comparison with Deif’s method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.