Abstract

We propose and demonstrate a novel approach to identify linear and nonlinear propagation regimes of an optical signal in an opti- cal fiber link by using chaos analysis. We show that the chaotic charac- teristics of a propagating optical signal are affected by both the chro- matic dispersion and the nonlinear effects in the optical fiber. Linear or nonlinear behavior is detected by determining the maximum Lyapunov exponent of the signal and the use of the recurrence plot technique. An experimental demonstration is performed using 10-Gbps signal propaga- tion in a 100-km fiber link with different launched optical powers. Chaos analysis shows a clear identification of the linear and nonlinear optical propagation regimes by using a classification scheme based on a multilayer neural network. Numerical simulations confirm the experimen-

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.