Abstract

We propose and demonstrate a novel approach to identify linear and nonlinear propagation regimes of an optical signal in an optical fiber link by using chaos analysis. We show that the chaotic characteristics of a propagating optical signal are affected by both the chromatic dispersion and the nonlinear effects in the optical fiber. Linear or nonlinear behavior is detected by determining the maximum Lyapunov exponent of the signal and the use of the recurrence plot technique. An experimental demonstration is performed using 10-Gbps signal propagation in a 100-km fiber link with different launched optical powers. Chaos analysis shows a clear identification of the linear and nonlinear optical propagation regimes by using a classification scheme based on a multilayer neural network. Numerical simulations confirm the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call