Abstract
Kinase enzymes phosphorylate protein substrates in a highly ordered manner to control cell signaling. Unregulated kinase activity is associated with a variety of disease states, most notably cancer, making the characterization of kinase activity in cells critical to understand disease formation. However, the paucity of available tools has prevented a full mapping of the substrates and interacting proteins of kinases involved in cellular function. Recently we developed kinase-catalyzed cross-linking to covalently connect substrate and kinase in a phosphorylation-dependent manner. Here, we report a new method combining kinase-catalyzed cross-linking and immunoprecipitation (K-CLIP) to identify kinase-substrate pairs and kinase-associated proteins. K-CLIP was applied to the substrate p53, which is robustly phosphorylated. Both known and unknown kinases of p53 were isolated from cell lysates using K-CLIP. In follow-up validation studies, MRCKbeta was identified as a new p53 kinase. Beyond kinases, a variety of p53 and kinase-associated proteins were also identified using K-CLIP, which provided a snapshot of cellular interactions. The K-CLIP method represents an immediately useful chemical tool to identify kinase-substrate pairs and multiprotein complexes in cells, which will embolden cell signaling research and enhance our understanding of kinase activity in normal and disease states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.