Abstract

The objectives of this study were to identify hub genes and biological pathways involved in lung adenocarcinoma (LUAD) via bioinformatics analysis, and investigate potential therapeutic targets. To determine reliable prognostic biomarkers for early diagnosis and treatment of LUAD. To identify potential therapeutic targets for LUAD, two microarray datasets derived from the Gene Expression Omnibus (GEO) database were analyzed, GSE3116959 and GSE118370. Differentially expressed genes (DEGs) in LUAD and normal tissues were identified using the GEO2R tool. The Hiplot database was then used to generate a volcanic map of the DEGs. Weighted gene co-expression network analysis was conducted to cluster the genes in GSE116959 and GSE118370 into different modules, and identify immune genes shared between them. A protein-protein interaction network was established using the Search Tool for the Retrieval of Interacting Genes database, then the CytoNCA and CytoHubba components of Cytoscape software were used to visualize the genes. Hub genes with high scores and co-expression were identified, and the Database for Annotation, Visualization and Integrated Discovery was used to perform enrichment analysis of these genes. The diagnostic and prognostic values of the hub genes were calculated using receiver operating characteristic curves and Kaplan-Meier survival analysis, and gene-set enrichment analysis was conducted. The University of Alabama at Birmingham Cancer data analysis portal was used to analyze relationships between the hub genes and normal specimens, as well as their expression during tumor progression. Lastly, validation of protein expression was conducted on the identified hub genes via the Human Protein Atlas database. Three hub genes with high connectivity were identified; cellular retinoic acid binding protein 2 (CRABP2), matrix metallopeptidase 12 (MMP12), and DNA topoisomerase II alpha (TOP2A). High expression of these genes was associated with a poor LUAD prognosis, and the genes exhibited high diagnostic value. Expression levels of CRABP2, MMP12, and TOP2A in LUAD were higher than those in normal lung tissue. This observation has diagnostic value, and is linked to poor LUAD prognosis. These genes may be biomarkers and therapeutic targets in LUAD, but further research is warranted to investigate their usefulness in these respects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call